
Periodic solutions of the intermediate long-wave equation: a nonlinear superposition principle

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1992 J. Phys. A: Math. Gen. 25 2005

(http://iopscience.iop.org/0305-4470/25/7/038)

Download details:

IP Address: 171.66.16.62

The article was downloaded on 01/06/2010 at 18:17

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/25/7
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. phys. A Math. Gen. 25 (1992) 2005-2032. Rinted in the UK 

Periodic solutions of the intermediate long-wave equation: a 
nonlinear superposition principle 

A Parker 
Department of Mathematics, University of Newcastle upon Tyne, NE1 7RU, UK 

Received 16 July 1991, in final form 12 December 1991 

Abstract. Periodic stationary-wave solutions of the intermediate long-wave (ILW) equation 
are derived using the bilinear transformation method, and a new expression for the 
dispersion relation is obtained. The class of physically important real-valued solutions is 
identified. mese solutions may be represented as an infinite superposition of solitary-wave 
pmjileq a property shared by the related Korteweg-de Vries (KdV) and Benjamin-Ono 
(eo) equations. This nanlinearsuperposirion principle, which has been the subject of various 
interpretations in the literature, is discussed. The ILW periodic solution approximates lo 
a sinusoidal wave and a solitary wave in the limits of small and large amplitudes, respec- 
tively. For intermediate amplitudes the solution can be well approximated by either a sine 
wave or solitary wave. In the shallow-water (KdV) limit the ILW periodic solution leads to 
the familiar cnoidal wave, whereas the deep-water (eo) limit yields Benjamin’s periodic 
wave. A previously unknown expression far the cnoidal-wave dispersion relation in terms 
of theta functions is obtained. The controversy surrounding the periodic solutions of the 
ILW equation reported by other authors is examined in the light of the results reported 
here. The ‘correct’ solution (which turns out to be complex-valued) is derived as a limit of 
the more general stationary periodic solution. 

’ 

1. Introduction 

The intermediate long-wave (ILW) equation is a weakly nonlinear integro-differential 
equation which describes the propagation of long internal gravity waves in a stratified 
fluid of finite depth [I-31. The equation has also been used to model large-scale wave 
motions in both the atmosphere and oceans [4-61, nonlinear waves in shear flows [7] 
and, more recently, the dead waterphenomenon [8] first reported by Ekman [9] .  

The ILW equation is a special case of the Whitham equation [IO] 

u,(x,  t ) + C u ( x ,  t)u,(x, u(x’, t ) G ( x ‘ - x )  dx’=O ( la)  

m 

G ( x ) = I I  2 a  _m c(k)e’”dk 

which describes weakly nonlinear waves in a dispersive medium. The coefficient C is 
a constant which characterizes the nonlinearity of the system. The integral in ( l a )  
(which is to be interpreted as a Cauchy principal value as necessary) represents the 
dispersive effects, where c( k) denotes the ‘internal’ phase speed and c(0) = c, (a positive 
constant). For a two-layer fluid of total depth D, with a thin thermocline located aj a 
depth d (D>>d), the appropriate expression for c(k) is given by Phillips [ l l ]  as 

Substituting equation (2) into (1) we obtain the dimensional form of the ILW 
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equation [2,3] 

dx’ = 0. (3) 

In the shallow-water limit, D+ 0, equation (2) gives c(k) - cn( 1 - k1dD/6) and the 
ILW (3) reduces to the well known Korteweg-de Vries (KdV) equation [12] (see section 
9), whereas the deep-water limit, D + m ,  yields c(k)-cn(l-lkld/2) and the ILW (3) 
reduces to the Benjamin-Ono (BO) equation [13-151 (see section IO). 

The ILW equation, like the related BO and Kdv equations, exhibits a balance between 
the effects of nonlinearity and dispersion which leads to the existence of waves of 
permanent form. Stationary solutions of the Kdv equation, in the form of sech‘ solitary 
waves and periodic cnoidal waves, are well known and were first derived by Korteweg 
and de Vries in 1895 [16]. The algebraic (Lorentzian) solitary wave and periodic 
stationary-wave solution of the BO equation were first obtained by Benjamin [13]. The 
solitary-wave and multisoliton solutions of the ILW were first reported by Joseph [l, 21, 
and subsequently obtained by Chen and Lee [17] and Matsuno [18] (using Hirota’s 
bilinear transformation method) and by Kodama et al [19] (via the inverse scattering 
transform). 

The derivation of the ILW equation from the basic fluid dynamical equations assumes 
that u(x, t )  has a classical Fourier transform and that U vanishes a 1x1 +W. Nevertheless, 
we may reasonably enquire as to whether equation (3) admits a spatially periodic 
solution. The numerical work of Kubota et af [3] indicates that such solutions exist; 
their resulting waveforms and phase speeds were found to agree with the known 
periodic solutions of the Kdv and BO equations (with the same period) in the respective 
limits. Recently, Miloh [20] has derived an analytic expression for the periodic station- 
ary-wave solution of the ILW equation (3), which be claims (mistakenly, as it tums 
out) to report for the first time. His method of solution is to assume that a periodic 
solution can be represented as a doubly ‘infinite sum of spatially repeated solitons’ 
and then to show, by direct substitution into (3), that it is a solution for a suitably 
chosen dispersion relation and arbitrary integration constant. This remarkable result, 
that a nonlinear periodic solution can be expressed as an infinite superposition of 
identical ‘solitons’, has been demonstrated for a number of nonlinear evolution 
equations including the Kdv equation [21-231 and, more recently, for the BO equation 
[24]. However, the interpretation given to the infinite series by these authors, namely 
that each series is a sum of repeated solitons (more correctly termed solitary waves) 
of the respective evolution equation, is technically incorrect and an alternative view- 
point is presented at the end of this paper. 

The periodic solution obtained by Miloh [20] had, in fact, already been reported 
by Zaitsev [25] (albeit for a dimensionless form of the ILW equation). Interestingly, 
in the same article, Zaitsev shows that periodic stationary waves in one spatial dimension 
can be deduced for a wide class of nonlinear evolution equations by superposing an 
infinite number of ‘solitary waves’. 

Other attempts to find periodic solutions of the ILW equation have been made, 
most notably by Joseph and Egri [2], Chen and Lee [17] and Nakamura and Matsuno 
[26]. However, Miloh [20] and Ablowitz et a/ [27] claim that the analytic solutions 
obtained by these authors are incorrect; the ‘correct’ solution, as given by the latter 
authors, is complex and appears, therefore, to have no physical significance. Certainly, 
the solution procedure adopted by Joseph and Egri and Chen and Lee can be criticized 
for being somewhat heuristic (inasmuch as it consists of formally replacing the real 
wavenumber in the ILW solitary-wave solution by a pure imaginary one) and does 
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indeed lead to an incorrect solution (see section 11). Miloh [20] appears to ascribe 
(mistakenly in our view) this same method of solution to Nakamura and Matsuno 
[26] whereas they, in fact, take an entirely different approach based on theta functions. 
Indeed, Milohs criticism is ill-founded since in their discussion Nakamura and Mat- 
sun0 [26] observe that the periodic solution of Joseph (and others) has essentially one 
free parameter, whereas their own solution contains two independent parameters. They 
point out that, as a consequence, the former solutions lead to divergent, non-physical 
solutions in the shallow-water Kdv limit (a fact also noted by Chen and Lee), unlike 
their own solution which relates smoothly to both the Kdv and BO periodic waves. 

In the present paper we will demonstrate that the bilinear transformation method 
used by Nakamura and Matsuno does indeed lead to correct periodic stationary-wave 
solutions of the ILW (3). Further, we shall derive the ‘corrected‘ version of the periodic 
solution proposed by Joseph and Egri [ 2 ]  and Chen and Lee [17] .  This solution tums 
out to be complex-valued and is given by Ablowitz et a l [27 ] ,  but without any indication 
as to how it can be derived. The advantage of our approach resides in the fact that 
our starting point is a complex-valued periodic solution of the ILW from which we are 
able to derive the latter solution as a particular limiting case (see section 11). Nakamura 
and Matsuno [26] chose to use a somewhat general definition of a theta function and 
their article is confined to showing that it solves the bilinear form of the ILW equation. 
In particular, their resulting expression for the important dispersion relation is compli- 
cated and unwieldy, involving, as it does, a ratio of two infinite series of hyperbolic 
functions. For our own part, we will use a specific theta function: this leads to a new 
and remarkably simple expression for the dispersion relation which readily lends itself 
to perturbation theory and numerical calculation. Not least, by proceeding to the Kdv 
limit, we will also obtain an expression for the cnoidal-wave dispersion relation which 
does not appear to have been reported elsewhere. 

Ablowitz et al [27] give the conditions under which the solution to the bilinear 
form of the ILW equation yields a solution of the ILW equation proper; these appear 
to have been overlooked by Nakamura and Matsuno [26].  As it tums out, these 
conditions are precisely those that are required to ensure that our own solutions are 
well defined and analytic. Curiously, for the important class of real periodic solutions, 
Miloh [20] and Zaitsev [25] both state the correct condition in the absence of any 
discussion of the convergence of their series solutions. 

The periodic solution of the ILW equation has a natural parametrization in terms 
of the nome of the theta function. A series expansion in the nome shows that the 
solution can be represented as an infinite superposition of ‘solitons’ which recovers 
the expressions obtained by both Miloh [ Z O ]  and Zaitsev [25];  this is the appropriate 
perturbation series for exploring the periodic solution when nonlinear effects are at 
their strongest. On the other hand, its Fourier series representation yields a perturbation 
series in the complementary nome which allows us to examine the periodic solution 
in the small-amplitude linear-wave regime. By using these series we can deduce 
the known periodic solutions of the Kdv equation (cnoidal wave) and BO equation 
(Benjamin’s solution) in the shallow-water and deep-water limits, respectively. 

2. Mathematical preliminaries 

We introduce the transformation 
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and define the parameter A > 0 by 

A = cod f 2 0  ( 5 )  

which characterizes the relative depths of the two fluid layers. 
Then, under the scaling (4), the ILW (3) is reduced to the dimensionless form 

U, +2uux+ G [ u ] ,  = 0 ( 6 )  

(7a )  u(x ' ,  t){coth f?rA(x'- x )  - sgn(x'- x))  dx' 

u(x ' ,  t)sgn(x'-x) 
= A {  dx'. 

_,exp(?iAlx'-xl)-l 

The form of the equation given by (6) and ( 7 a )  is that used by Nakamuta and Matsuno 
[ 2 6 ] .  We note that G is a linear operator, and the equivalent expression ( 7 b )  shows 
that G[u,]=O if u,,=constant. 

We shall also find it convenient to write equation (6) in the slightly different form 

J "  
a* J - ~  

u , + ~ u u , + : $  ~ ( x ' ,  t )H(x ' -x)dx '=O 

k m 

H(x)  =L I E(k )  eiCI dk  E(k) = A[ 1 -; coth (31. ( 9 )  27r -m 

This is essentially the form of the equation discussed by Zaitsev [25] and will prove 
useful for analysing the Kdv and BO limits. 

The ILW equation (6) is invariant under the Galilean transformation 

x'= x -2u,t t ' =  t u = u - U ,  un= constant. (10) 

Thus, if U(x,  t )  is a solution of the ILW equation ( 6 ) ,  then so too is u(x, f ) =  

uo+ U ( x - 2 u n f ,  1 ) .  In particular, if U ( [ ) ,  c =  x -  ut, is a stationary solution of the ILW 

equation with phase speed u=constant: then U =  U,+ U(5-2unt)  is also a stationary 
solution with augmented speed c = 2un+ U. 

3. Periodic solutions 

b d e r  :he nan!inear dependent-varlab!e !ra!?sf"rmatian 

u(x. t )  = uo+iax lntf+(x, t)/f-(x, t)1 U, = constant (11) 

where (following the notation of Ablowitz et al [ 2 7 ]  and Matsuno [ 2 8 ] )  f& 1 )  = 
f(x*i/A, 1 )  and d, denotes the partial derivative with respect to x, equation (6) can 
be written in its bilinear form [17, 181 

[iD, +i(A +2u,)Dx - D:+ B ] f +  .f- = 0. ( 1 2 )  

Here, B is an arbitrary integration 'constant' (possibly dependent on time) and D,, D, 
are the usual bilinear operators defined by (see e.g. [ 2 9 ] )  

DTD:a(x, t) ' b(x, 1)' (J,-J,.)m(J,-J,.)"a(x, t ) b ( x ' ,  f ' ) l , = , .  ,,=, I. 
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If we use the properties of the bilinear operator, D,"a. b=(-1)" b . a  and 
exp(aDJa(x). b(x)=a(x+E)b(x-E),  then it can be shown [28] that the bilinear 
equation (12) can be re-expressed as 

F(Dt, D x ) f . f = O  (13a) 

F(D,, D,)=i{D,+(A+Zu,)D,} sinh(iA\-'D,)+(D:-B) cosh(iA-'D,). (13b) 

We seek a solution of (13) in the form of the theta function e,, 

where the phase variable is given by z = px + of + a, with p,  w, a arbitrary (possibly 
complex) parameters at this stage. We remark that &(z, q )  is periodic in z with period 
n and is an entire function provided the nome q is such that O <  191 < 1 (i.e. Im(7) > 0). 

Substituting (14) into (13), we obtain the residual equation 

4e,(zz, q2)+F,;4-1/2e2(2~, q 2 )  = o  
where 

m 

F,,, = Z: F[2i(2n - m)w,  2i(2n - m ) p ~ q ~ ~ + ' " - ~ ' '  m =o, 1 (15) 
"--d 

and 
m 

("+l /2)2  e1(2n+lJi 
e2(z, q ) =  c 

"=-m 

It follows that f= 0, is an exact solution of (13) provided that Fo = F, = 0, whence, 
using (15) and the functional form of F given by (13b), we obtain the pair of 
simultaneous linear equations in o and B 

A [ o  + (A +2up)p]Ab- A2pZAg - A$ = 0 (16) 

A [ o  + ( A  +Zuo)p]A: -A2p2A; - A,B = O  (17) 

where the quantities A,, A ,  are defined by 
m 

A,(p;  q, A )  = 1 q2"'cosh(4np/A) = 0,(2iy, q 2 )  Y = P / ~  (18) 

A i ( P ; q , A ) =  4 "'+("-l)z cosh[2(2n - l)p/A\l= q1/202(2iy, 4'). (19) 

"=-U 

m 

n=-m _ _  Here, the prime denotes diiierentiation with respect to the wavenumber p.  
Solving equations (16) and (17) for o and B we find that 

We note that the dispersion relation (20) can be rewritten in the more compact form 

w = - (A+2uo)p+~p2d ,  In W ( A , ,  A , )  (22) 

where W(Ao,  A , )  = AoA; -AAA, is the Wronskian of A ,  and A , .  
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Although the constant of integration B has no dynamical significance, it will be 
demonstrated later that B # 0 which ensures the compatibility of equations (16) and 
(17). Indeed, the usual 'soliton' boundary conditions, U + 0 as 1x1 + m, imply that B = 0 
in the bilinear equation (13); in this case, the bilinear operator (13b) satisfies the 
Hirota conditions [30] thereby guaranteeing the existence of solitary-wave and soliton 
solutions. We conclude that the non-vanishing of B plays a crucial role in the periodic 
problem, though, as we shall see (section 6), B + 0 as q + 0 which is the solitary-wave 
limit for the periodic solution. 

Thus, f(x, t ) =  O,(z), together with the transformation (11) and the dispersion 
relation (22). would appear to give an exact periodic solution of the ILW (6); Nakamura 
and Matsuno [26] call this the one-periodic wave solutiont which is, in general, 
complex-valued. However, it is not immediately apparent that a solution to the bilinear 
equation (12) (or, equivalently, equation (13)) yields a valid solution of the ILW (6). 
To do so, it turns out that f ( x ,  t )  must satisfy certain analyticity conditions (Ablowitz 
et a/ [27]) which essentially ensure that the bilinear form of the ILW (6) has the 
expression given in (12). Nakamura and Matsuno [26] omitted to address these validity 
requirements in their paper. We shall consider the question of whetberf(x, t )  = O,(z) 
satisfies these conditions (which we shall, henceforth, refer to as the 'Ablowitz condi- 
tions') in section 5 ,  where we will also identify the important class of real periodic 
solutions. 

4. The dispersion relation 

Substituting the series (18) and (19) into (20). and collecting like powers of q, yields 
a complicated and unwieldy series expansion for U which is of little practical use (see 
e.g. Nakamura and Matsuno [26]). However, by noting that D,a(x) b ( x )  = - W(a,  b), 
(22) can be reformulated as 

o=-(A+2uo)p+Ap2J,ln{DpA0.A,}.  (23) 
Then, using the bilinear property, 

0: cosh(plx). cosh(p2x) =4(pI-p2)" sinh(p,+p,)x+(p,+p,)" sinh(pl -p2)xl 
for n an odd integer, we find that 

(24) 2 "  2n'+m'+(m-l)' . D,A,.A,=- 1 (2n-2m+l)q sinh[2(2n +2m - l )y] .  
A n.m--m 

The summations in (24) can be uncoupled by setting r = n + m, s = n - m, so that 

the summation ranging over all pairs of even integers and all pairs of odd integers 
(positive, negative and zero). If we now let (r, s) = (2k, 21) and (2k+ 1,21+ 1) in (25). 
then, after a little manipulation, we find that 

m 

D,Ao . A, = 2A( q, A )  1 q'zk-1/2'2 sinh[2(4k- ' l )y]  (26) 
*=-m 

where the coefficient A is independent of p.  

t These authors use a general expression for the theta function 



Periodic solutions of the ILW equation 201 1 

The series (26) can now be summed using the theta function 

el(z, 9 ) = 2  1 (-1)"9(n+'/')*sin(2n+l)' 
m 

"=O 

to yield 

D,Ao.A,=iA(9,A)8,(2iy, 9 ) .  (27) 
Substituting (27) into (23), we finally deduce the remarkably compact expression for 
the dispersion relation 

where the prime denotes the derivative of &(z, 9 )  with respect to z. We note that the 
explicit form of A(9, A )  is not important, since it vanishes on taking the logarithmic 
derivative in (23). However, it is not difficult to show that A can also be written in 
terms of 8, as A = q"2b':(0, q)/A. It is rewarding to note that the dispersion relation 
(28) bears more than a passing resemblance to that for the periodic (cnoidal-wave) 
solution of the related Kdv equation [30]. The importance of the dispersion relation 
in the form (28) rests in the fact that it readily lends itself to perturbation theory 
and numerical computation, a significant advantage over the previously reported 
expression [26]. 

Likewise, we can show that the integration constant B has an expression in terms 
of theta functions, namely 

5. Analyticity conditions and real periodic solutions 

We shall find it convenient to let z +iz (i.e. p-kp, w +to, etc) in (14), and we therefore 
consider the periodic solution given by setting f ( x ,  t )  = e&, 9). With the nome 9 
understood in what follows, the periodic solution (11) becomes 

with dispersion relation given by (28) as 

o = -(A +2uo)p+ipz8;(iy)/81(iy). 

The integration constant (29) is replaced by 

It can be shown that B has the series expansion 

(33) 
m nq'"( l+q'") 

B( y; q )  = -8p2 sinh' y 2 (1 - q2")(1 -29'" cosh 2y+q4") 

which shows that B # 0, as required (recall that O <  141 < 1) 
Let us observe that the function 
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where O(z) denotes any of the four theta functions, &(z) ( i  = 1,2,3,4),  is periodic 
with real period a, and has the complex quasiperiod TT since 

It follows that the solution (30) is biperiodic in z with periods 2 a  and 2 m  whose 
ratio is complex definite ( I m ( ~ ) > 0 ) .  Thus the general solution (30) is an elliptic 
function which is b ipe~odic  in the spatial variable x with periods 2 n / p  and Z T T / P .  
These periods will be either real or complex depending upon our choice of the 
parameters p and T- Moreover, since O(r) has either even or odd panty in z, the 
function defined in (34) has odd parity. It is now straightforward to show that the 
solution (30) is invariant under the parity transformation p +  - p  (modulo a phaseshift 
a + -a). 

The periodic solution (30) is, in general, complex-valued. Since we shall be inter- 
ested in physical applications, we must eventually choose the free parameters uo, p, e 
and q (or T )  so as to obtain real solutions. With this in mind we shall, henceforth, let 
uo be real and take T = ~ S  (s> 0) to be pure imaginary, whereupon q =exp(-as) is 
such that 0 < q < 1. To ensure that we get a real spatial period, two choices for the 
wavenumber p are now available. 

5.1. p real 

Because of parity invariance we may, without loss of generality, take p > O .  Then 
y = p /  A > 0 and, using the complex conjugate property 

we find that o (equation (31)) is real. Thus, the phase variable z = p x + o f + a  is real 
or complex depending on whether the phaseshift a is real or complex, respectively. 

In this case, the solution (30) may be written in the form 

with the real dispersion relation given by (31). The solution is spatially periodic (in 
x) with real period U = 2?r/p.  

The function O,(z) has simple zeros at z = ( m + f ) a + ( n + f ) m  ( m , n  integers) and 
so the solution (36) has a lattice of simple poles which must be avoided. 1% is 
straightforward to show that the solution (36) is well defined and analytic in the strip 
IIm(z)l< as - y. and we therefore obtain the analyticity condition 

IIm(a)l< ws - y o <  y < as. (37) 

It can be shown that (37) is precisely equivalent to the Ablowitz conditions (see section 
3) which ensure that u(x.  t), equation (36), is a solution of the ILW (6). 

Incidentally, the solution (36) can be expressed in terms of Jacobi’s zeta function as 

u(x, t )  = uo+- iK (k)p { z [ K(k) ( - i ?), k ]  - z [ ( L + i y ) ,  k]] a a a 

where K ( k ) > O  denotes the complete elliptic integral of the first kind with modulus 
k ( O < k < l ) .  
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It is evident from equations (35) and (36) that the solution U(& f) is real-valued 
only if a is real (i.e. z is real); otherwise it is complex-valued. Thus, for real stationary 
periodic solutions, which may be used to represent physical waves, the analyticity 
condition (37) reduces to 0 < y < ?IS. 

5.2. p purely imaginary 

We now let p + ip where we may again take p > 0 because of parity invariance. Then, 
letting y+iy, y=p/A>O,  and using equation (35), we find that o (equation (31)) is 
pure imaginary. We therefore transform o + io, whereupon (31 )  yields the dispersion 
relation 

If we replace a by ia, then the phase variable z + iz, z = p x +  of + a, and again L is 
real or complex according to whether a is real or complex, respectively. 

The solution (30) now takes the form 

which has a real spatial period (in x )  given by U = 2 m / p .  
The simple poles of u(x, 1 )  can be avoided provided that we restrict z to the domain 

lIm(z)l<?r-y. Thus, (39) yields a well defined, analytic solution if the analyticity 
condition 

IIm(a)l<a-y o < y < ? r  (40) 

is satisfied. It is again easy to show that (40) is equivalent to the Ablowitz conditions 
which ensure that (39) is a solution of the ILW (6). 

Expanding the solution (39) as 

and using equation ( 3 9 ,  it is evident that u(x ,  1 )  is real-valued only if the phaseshift 
a is real. In this case, the analyticity condition (40) reduces to 

O < y < ? r .  (41) 

In summary, we see that it is possible to obtain valid stationary periodic solutions 
u(x, I )  of the ILW (6) in two different ways: by choosing the phase variable z to be 
either ‘real’ or ‘pure imaginary’ (modulo the arbitrary phaseshift a) in (30). Both 
choices lead to physically important real solutions by choosing the phaseshift a 
appropriately. It is therefore important to consider whether these two solutions are in 
any sense distinct. In fact, it turns out that the two solutions are equivalent to one 
another under a suitable transformation of parameters. To demonstrate their 
equivalence one uses Jacobi’s modular transformation for theta functions; although 
straightforward, this requires some tedious technical manipulation. In particular, of 
course, the real solutions in each case represent physical waves that are dynamically 
equivalent in every respect. 
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6. A nonlinear superposition principle: solitary-wave limit 

Let us consider the periodic solution of the ILW (6) given by equation (39). Since the 
phaseshift 01 is arbitrary, we may transform n + n + rs without affecting the dispersion 
relation (38) or the constant of integration E. If we note that iz + i r  + VT ( T = is) and 
use the quasiperiodicity property & ( z )  = p O , ( z + f r ~ ) ,  p = q1'4 exp(ir), then the 
solution (39) becomes 

where the periodicity factor p ( z )  has been eliminated by the logarithmic derivative. 
Moreover, the analyticity condition (40) is unaffected by the transformation. The 
solution in the form (42) will allow us to recover the (real) periodic solutions obtained 
by Miioh [ZOj and Zaitsev [Xj. 

We now make use of the identity 

which we readily deduce from the infinite product expansion 
m 

ez (z ,q )=2q1 /4cos~  n (1-q2")(i+2q2"cos22+q4").  
" = I  

Substituting (43) into (42), and making use of the elementary hyperbolic identity 

2sinh(A-B) 
tanh A - tanh E = cosh(A - B)+cosh(A+ E) 

we find that 

sin y m 

u(x , f )=uo+P z z = p x + o 1 + u  (45) 
n=-m cosh(z - 2 n m )  +COS y 

with the dispersion relation given by (38). 
If we take n to be real, then (45) is a real periodic stationary-wave solution of the 

ILW (6) (with wavelength u = 2 r s / p )  provided that the analyticity condition (41) is 
satisfied. It is reassuring to note that (45) recovers the (real) periodic solution obtained 
by Zaitsev [25], under a suitable identification of parameters. 

With the aid of the series representation (45), we are now able to give an interpreta- 
tion to the real periodic solution u(x ,  I) as an infinite sum of regularly spaced 'solitary 
waves'. The solitary-wave (one-soliton) solution of the ILW equation is well known 
and has been derived independently by Joseph [l], Chen and Lee [17], Matsuno [IS] 
and Kodama et 01 [19]. For the ILW (6 ) ,  it is given by 

p sin y 
cosh(px+o,t+n)+cos y 

o< y <  P U,(*, 0 = 

o, = -Ap+p2 cot y (47) 

which satisfies the usual 'soliton' boundary conditions U + 0 as 1x1 +m. (It is easily 
seen that the solitary wave satisfying the more general boundary conditions, U + uo as 
Ixl+m, can be deduced from (46) and (47) using the Galilean transformation (lo).)  

We remark that, with O <  y < r, the solitary-wave speed 

c, = A[l - y Cot y] 
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is positive, i.e. the solitary wave is unidirectional. This is in contradistinction to the 
assertion of Miloh [ZO] that the solitary wave may travel both to the left and right. 

Comparison of (45) and (46) shows that the periodic solution of the ILW equation 
can be represented as an infinite superposition of equally spaced solitary-wave profiles 
whose crests are centred at z = 0, + 2 m ,  +4?rs,. . . . This remarkable property, whereby 
a nonlinear periodic wave can be expressed as an exact sum of solitary-wave shapes, 
iS well known for the Kdv equation. It was first reported in 1975 by Toda [21] who 
demonstrated that the cnoidal wave can be written as a doubly infinite sum of repeated 
sech2 solitary-wave profiles. A large number of nonlinear evolution equations have 
since been shown to possess this same property [23-251. Because of its wide applicabil- 
ity, this property may legitimately be regarded as a nonlinear superposition principle. 
However, caution must be exercised when interpreting the principle: we do not have 
a superposition of solitary-wave solutions in the accepted sense of linear theory. This 
is because the speed of the periodic wave differs, in general, from that of the solitary 
wave whose shape is replicated to generate the periodic solution. Thus, we do not 
have a superposition of solitary waves per se, but only a superposing of their shapes. 
This observation appears to have been overlooked in much of the literature, and 
the question of how we should interpret this property is considered more fully in 
section 12. 

To be precise in the present instance, we can use the series [31] 

-2q2" cos 22+ 44' 

to write the dispersion relation (38) as 

q2' m 
o =os -2uop+4p2  sin 2y x "=, i - 2 q 2 ~ c o s 2 y + q 4 ~  O < y < n  (49) 

(where we note that the analyticity condition (41) ensures the convergence of this last 
series). Recalling that q = exp(-rs), s > 0, the periodic wave (45) has speed c = - w / p  
which can be expressed as 

I m 

U , - p  sin 2y [cosh(2nm) -cos 2yl-I 
" - 1  

c = c , + A c  

This shows that, in general, c # c,. However, because uo can be chosen arbitrarily, the 
particular choice 

m 

u , = p  sin2y [cosh(2nm)-cos2y]-' O < y < ? T  (51) 
n=, 

ensures that Ac = 0. Because the wavespeeds of the periodic wave and solitary wave 
(46) now coincide, Zaitsev f251 interprets the summation (45) as a true linear superposi- 
tion of solitary waves in this case. But this conclusion is clearly mistaken since (51) 
shows that, in general, uo# 0; see solution (45). However, for the value of y =fr only, 
we see that U,, = 0: for this very special choice, (45) now becomes 

m 

u(x ,  t ) = p  1 sech(z-2nm) z = p x  + of + a (52) 

which is a linear superposition of solitary waves in the accepted sense, each one being 

"--m 
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of the form 

y(x,  t)  = p  sech z o, = - Ap = -2p2/ T. (53) 
Incidentally, (53) shows that the ILW equation possesses a solitary wave which has a 
shape identical to that of the ‘sech’-type solitary wave of both the modified Kdv equation 
and the envelope solitary wave of the nonlinear Schrodinger equation. 

Figures 1 and 2 illustrate the superposition principle for the values y = & ~  and 
y = 3 a/4, respectively; we have put uo = 0, p = 1 in both cases. Each figure shows the 
resulting periodic wave for the three parameter values s = O S , ] ,  2 with corresponding 
wavelengths D = T, ZT, 4m. For s = 0.5 (g = 0.21) we see that the neighbouring solitary- 
wave shapes have large overlaps and sum to produce an approximate sine wave with 
small amplitude. This is the linear-wave regime for the periodic solution given by s + 0, 
g + l ,  when nonlinear effects are weak (see section 7). As the wavelength increases, 
the component soiitary-wave iorms graduaiiy separate and their overiaps are reduced 
significantly. When s = 2 ( q  -0.0019), the solitary-wave shapes have become well 
separated with little overlap of their exponential tails. This is the ‘large-amplitude’ 
regime in which nonlinear effects are at their strongest and each wave crest is well 
approximated by a solitary wave. Indeed, letting q + 0 (s + +m) the wavelength becomes 
infinite, and (45) and (49) reduce to 

p sin y 
cosh( pxf ot+a)+cos  y 

u(x ,  1 )  = UO+ O<y<Tr (54) 

x 

Flgure 1. Generating the periodic solution of the ILW equation by the superposition of 
identical solitary-wave profiles, with y = fn: the wave crests are broad and similar in shape 
to those of the cnoidal-wave solution of the KdV equation. ( a )  s=O.S: small-amplitude 
linear wave regime; ( b )  s = 1: intermediate-amplitude wave; (e) I =  2: large-amplitude 
solitary-wave regime. 
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x 

Figure 2. Periodic solution ofthe ILW equation with y =3?r/4 the wave crests are narrow 
and the resulting wave is characteristic of the BO periodic wave. ( a )  s =0.5; ( b )  .I = 1; (c) 
s=2 .  

which recovers the ILW solitary wave (with U +. uo as IxI+ 00). From (33) (with p +. ip, 
y+.iy) we see that B(y; q)=-8p2q2sin2 y+O(q4), as q - 0 ,  i.e. corresponding to 
the solitary-wave solution (54) we must have B=O,  as we earlier anticipated (see 
section 3). 

The solution ( 5 2 )  (y  =fr) divides the spectrum, O <  y <  m, of periodic solutions 
of the ILW equation into essentially two categories. When O <  y<$rr ' the wave crests 
have the broad, bell-shaped character of the underlying solitary-wave form which is 
reminiscent of the familiar sech' profile of the Kdv solitary wave (figure 1). This 
contrasts with the more sharply peaked crests when fr  < y < m, for which the underlying 
solitary wave has the characteristic shape of the rational (Lorentzian) solitary wave 
(equation (86))  of the BO equation (figune 2). This dual nature of the ILW solutions 
reflects the fact that the ILW equation spans the divide between the shallow-water (Kdv) 
theory ( y + 0 )  at one end, and the deepwater (BO) theory ( y + r )  at the other; these 
limits are examined in sections 9 and 10, respectively. 

It is interesting to note that the solitary wave (54) is given by the term n = O  in the 
sum (45) and may therefore be expressed in the form 

u(x. t ) =  u , - f i p { t a n h ( T )  - t a n h * ( q ) )  

where we have made use of (44) and the relationship tanh*(z) = tanh(r*), the asterisk 
denoting the complex conjugate. 

The series (45) shows that the solitary wave acts as a kind of 'template' or 'pattem' 
function which, when repeated at equal intervals over all space, generates the ILW 

periodic wave and, remarkably, does so for all values of the nome q (and not simply 
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for values q = 0 at the solitary-wave end of the spectrum). Because of the way in which 
the copies of the solitary-wave shapes repeatedly overlap, Boyd [32] introduced the 
more suggestive term ‘imbricate’ to describe these series (after the adjective meaning 
‘to decorate with a repeating pattern like overlapping tiles’) and we shall use this 
description in what follows. 

The importance of the imbricate series (45) should not be underestimated: it is 
evident that it is the appropriate perturbation series for efficiently exploring the 
solitary-wave regime of the ILW periodic solution. As far as we are aware, the series 
cannot be generated by any known perturbation scheme. This contrasts with the 
corresponding Fourier series representation (see section 7) which is used to examine 
the linear-wave regime and which is obtainable by, for example, the method of multiple 
scales (or strained coordinates). 

It is rewarding to note that, under the inverse of the transformation (4), the imbricate 
series (45) and wavespeed (50) together recover the periodic solution of the dimensional 
form of the ILW (3) as found by Miloh [ZO]. By virtue of (42), this solution has (using 
Miloh’s notation) the compact analytic expression 

with [ = x -  V f  and 

7. Fourier series: the linear-wave approximation 

Whereas the imbricate series (45) converges rapidly in the solitary-wave regime q + O ,  
this series is of little value when exploring the linear-wave domain given by 9+ 1 
(s+ 0). Although the series is absolutely convergent for all O <  q < 1, it is evident that 
the rate of convergence slows as the small-amplitude linear-wave limit q + 1 is 
approached (see figures 1 and 2). The appropriate perturbation parameter in the latter 
limit is the complementary nome 9’=exp(im‘) where T’= -UT, whence 9‘= 
exp(-m/s)+O as 9-1,  

To deduce the perturbation series in 9’ for u(x ,  t), we make use of Jacobi’s modular 
transformation for e,( z )  [31] 

ez(z 17) = (-iT’)”’ ei*’z2/Te4( 7’2 I T’) 
which, when applied to (42), yields the periodic solution in the form 

i+y a [ ~ , [ t i ~ ’ ( z - i y ) l ~ ~ ] ]  
Tr ax e4[ti~’( z + i y ) l~ ’ ]  

u ( x ,  t )  = uo -- p + i - In 

If we now use the Fourier series [31] 

then (56) becomes 
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(the analyticity condition (41) ensuring the convergence of the series) and is the desired 
Fourier series representation of the periodic solution in the perturbation parameter 4'. 

The corresponding dispersion relation (in 4') can be obtained by applying Jacobi's 
transformation for O1 to (38) which results in 

If we now use the expansion (48) in the last result, we obtain the series 

o =  - [ * + 2 ( u o + z ) ] p  

Letting q'+O (s+O) in (57) and (58), we deduce the 'small-amplitude' linear-wave 
approximation for the periodic ILW solution 

which we recognize as the infinitesimal Stokes solution with the 'correct' linear-wave 
speed 

8. Intermediateamplitude waves 

We have seen that, when the amplitude is small (i.e. nonlinear effects are weak), the 
periodic solution of the ILW equation is approximately a sine wave, whereas for 'large' 
amplitudes (when nonlinear effects are at their strongest) it is well approximated by 
a solitary wave. We might reasonably enquire as to the nature of the periodic wave in 
the regime of intermediate amplitudes and moderate nonlinearity. 

Boyd [33] investigated this for the periodic (cnoidal-wave) solution of the Kdv 
equation and showed (numericaiiy) that, in the regime of intermediate ampiitudes, the 
cnoidal wave may be regarded as either a sine wave or solitary wave to a good 
approximation. We will show that this is also true of the more general ILW periodic 
wave, and, in doing so, obtain analytic expressions for the errors involved. 

To proceed, we shall find it convenient to normalize the ILW periodic solution in 
the conventional way by setting the ambient (or mean) level of the wave 

( U ) = -  u(x, t )dx (61) 

to zero. (The integration in (61) is over a single wavelength u.) This requires that the 
constant term in the Fourier series representation (57) is zero, and we therefore set 

U ' f  
uo= -yp/Vs. 
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We take as our linear-wave approximation the first term in the Fourier series (57) 

W(z; y, 4' )  =; 4p ' - " ,2 sinh( :) cos (5)  
1-q  

which we anticipate will be a slightly better approximation than the Stokes solution (59) .  
To see how well W(z) approximates to u ( x ,  1 ) .  we consider the error function 

(given by subtracting (57)  and (62)) 

where the subscript indicates a first-order approximation. It is evident that E , ( z )  is 
periodic ( Z m )  and even, and so we need only consider the half-period O r  z r TS. 

From (63) we easily see that the maximum error occurs at z = 0, whence we have that 

where we have used O < q ' <  1 to obtain this last inequality. 

we obtain a global error bound 
The last series in (64) can be majorized by recalling that q'=exp(-a/s), so that 

We notice that e,+O as q ' + O ,  as expected, since this gives the small-amplitude 
linear-wave limit. 

Because the linear-wave and solitary-wave approximations are given by q ' + O  and 
q + 0: respectively, the 'worst-case' scenario for intermediate amplitudes occurs when 
q'= q = e x p ( - ~ ) ,  i.e. when s = 1. Moreover, as the error bound is proportional to p, 
we consider the case p = 1. Then, for the 'typical' periodic wave with y = &r, we find 
that, in the 'worst-case' scenario, the error bound (65) is 

e, = 2 e-"/{(1 -e-*")(] -e-+)] = 0.109 
which gives a relative error of 21.4% at z = 0. This shows that there is reasonably good 
agreement between the linear wave W ( z )  and periodic solution U(% I) even in the 
regime of intermediate amplitudes (figure 3). If we now put s = 0.5 (g'= exp(-Zr) = 
0.0019) we find that the error estimate is significantly reduced to e, = 0.0078 (a relative 
error at z = 0 of only 4.3%) and the graphs of the periodic solution and approximating 
linear wave are virtually indistinguishable. We conclude that the 'typical' ILW periodic 
wave can be legitimately regarded as a sine wave even in the regime of moderate 
noniinearity. This should not surprise us since it reflects the weakly nonlinear character 
of the ILW equation. 

We note, however, that the error bound e, is a function of y which, as we have 
seen, characterizes the shape of the periodic wave. Thus, for a fixed p and q', (65) 
shows that the error is reduced as we approach the Kdv end of the ILW periodic 
spectrum (i.e. y+O), and increases at the BO end (y+rr) .  In other words, the 
intermediate-ampiitude periodic soiution OF the ILW equation is better approximated 
by a sine wave for 'Kdv-like' waves than for 'Bo-like' waves. 

Now let us approximate the periodic solution on [-m, 7rs3 by the (normalized) 
solitary wave centred at z = 0 and given by (54) as 

PY p siny 
V(2; y,q)=--+ 

r s  c o s h z f c o s y '  



Periodic solutions of the ILW equation 2021 

Figure 3. The (normalized) intermediate-amplitude ILW periodic wave with y = i ~  and 
p = I (full curve) is compared with the approximating linear wave W ( r )  = sech(:n) cos I 
(dotted curve) and solitary wave V(r)=-O.S+seeh i (broken curve) in the ‘wor~t-~ase’ 
scenario q = q ’ = e x p ( - ~ ) .  

Then, (45) and (66 )  yield the error function 

where the summation excludes the term n = 0. Again it is sufficient to consider 0 e z s ?IS 

since & ( z )  is even. 
It is evident from the superposition (45) that the maximum error now occurs at 

z = ?rs (because the largest contribution to %I on [0, TS] is from the solitary-wave 
profile immediately to the right of V ( z )  and centred at z = 2 ~ s ) .  Hence, substituting 
z = TS into equation (67 )  and making use of the relation q = exp(-m), we eventually 
find that 

If we now recall that 0 < y < TI and 0 < q < 1, then (68 )  finally yields an error bound 

In the solitary-wave limit q+O, we see that s l+0 ,  as expected. 
Once again, the error bound is proportional to p and it suffices to consider the 

case p = 1. The global error is a maximum for the ‘typical’ periodic wave, y = f ~ :  for 
the ‘worst-case’ scenario s = 1 ( q  = q ‘=  exp(-?r)), we obtain =0.095 which gives a 
relative error at z = m of approximately 29%. This rather large (but not surprising) 
error at z = ns belies the fact that the solitary wave V ( z )  is a good approximation for 
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u(x ,  I) over the greater part of the period [-m, TS] (as figure 3 clearly shows). If we 
put s = 2 ( q  = exp( -2~) )  in (69), then the error is significantly reduced to 0.0037 (a 
relative error of only 1.5% at z = m )  in which case the periodic wave and approximating 
solitary wave are graphically indistinguishable. Thus, to a good approximation, the 
ILW periodic wave may be regarded as a solitary wave even in the regime of intermediate 
amplitudes. 

We conclude that the periodic solution of the ILW equation exhibits a large overlap 
between the linear- and solitary-wave regimes; this duality reflects the weak nonlinearity 
of the ILW equation itself. Put another way, periodic waves with intermediate amplitude 
may be regarded as either a solitary wave or linear wave to a good approximation. 

9. The Kdv (shallow-water) limit 

The shallow-water limit for the ILW (3) is given by D +  0, and equation ( 5 )  shows that 
this is equivalent to A + w. Consider the dimensionless form of the ILW equation given 
by (8) and (9 ) ,  and note that 

as A+w. (70) 
1 

3h 
~ ( k )  = -- k 2 + 0 ( ~ - 3 )  

If we now introduce the coordinate transformation 

X =?/A t = 3 i / f i  

and use equation (70), then, in the shallow-water limit A + w, the ILW (8)-(9) reduces 
to the Kdv equation 

u ; + ~ u u :  + uii? 0. (72) 

To deduce the corresponding limit for the (real) periodic solution of the ILW 

equation we define new parameters 

$ = P I A  & = 3 0 / 6  ; = a  (73) 

where 5, & are real and finite as A + W. We note that y = p / h  = $I&+ 0 as A + w. 

solution of the Kdv equation (72) 
Substituting (71) and (73) into (45) and letting A+m, we deduce the periodic 

m - 
u(x ,  t )=u0+$$’  sech2f(z-2nm) z = $Z+ &t + oi (74) 

n - 1  

with wavelength U = 2ns/$. 
Of course, (74) is nothing more than the cnoidal-wave solution of the Kdv equation 

expressed as a superposition of identical sech’ solitary-wave profiles. This result was 
the first reported example of the nonlinear superposition principle for periodic solutions 
of evolution equations; it was first obtained by Toda [21] and later by Korpel and 
Banerjee [22], Whitham [23] and Boyd [34] using other methods. The cnoidal wave 
(74) has a representation in terms of theta functions which can be deduced from the 
corresponding form for ILW periodic solution (42): using the same limiting procedure 
we find that 

U(?, r )  = U,+ 2J: In e2(+iz. q ) .  

This is precisely the form of the cnoidal-wave solution obtained by Nakamura [351 
and Parker [30] using the bilinear transformation method. 
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Substituting (73) into (38), and using the series (48). we eventually derive the 
dispersion relation corresponding to (74) 

where we have made use of the standard result [31] 

The expression (75) for the dispersion relation corresponding to the cnoidal wave of 
the Kdv equation has been obtained by the present author [30] using other (more 
direct) means and would seem to be new. 

Letting U +  m (i.e. q +0, s +m) in equations (74) and (754, we recover the classical 
sech' solitary-wave solution of the Kdv equation 

U(?, F)  = U,+$$* sech' f( $2 + ;i+ 6 )  3 = -6u,$-$3. (76) 

Taking the Kdv limit in the integration constant B( y; q )  (equation (32) with p + ip, 
y+ iy )  it can be shown that 

and therefore B Z O  for the periodic problem; however, we see that B=O in the 
solitary-wave limit q + 0. 

10. The BO (deep-water) limit 

The deep-water limit is obtained by letting D + m and leads to A + 0, in which case 
equation (9) gives E(k)--lkl .  Substituting for E(k)  into the ILW (8) now yields the 
BO equation 

(78) U, +2uux + X[u], = o  
where %[f] is the Hilbert transform 

To find the limiting form of the (real) ILW periodic solution (45) in the deep-water 
limit, we first introduce the arbitrary (finite) parameter $ 7 0  such that 

p =  aA(1 -A/$). 

It follows that 

y = p / A  = a(]- A / $ )  

which remains finite in the deep-water limit A + 0 with y --f a. 

the wavelength of the periodic solution (45) 
To proceed, we now define the finite parameter S by S/$ = s / p ,  for all A, whereupon 

u = 2 a s / p = 2 a q i  (81) 
is independent of A. We note that p and s are both O(A) as A + O .  
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Then, using equations (79)-(81), we find that the periodic wavespeed (50) has the 
limiting form 

nu; -' 
as A + O .  

This last series may be summed by using the Mittag-Leffler expansion 
m 

9rz coth 9rz = 1 + 2  ,y [I  + ( n / t ) Z ] - '  
n = ,  

which, with z = 2/uF, yields (z) asA+O. 
2.77 

c = E+O(A) E=2110+-coth -= 
U 

If we now put 

(with & finite), then the phase variable z = p x  + ot + a becomes 
and a = p Z / $  (83) i, = -FE 

T A  

P z =T ( F x + O t +  6 )  +O(A2) as A + O .  (84) 

Substituting (84) into (45). and proceeding to the limit as A + O ,  finally reveals 

a periodic solution of the BO equation (78) with wavelength given by (81). 

that 
Applying the same limiting procedure to the integration constant B, we can show 

B-&[l - ico th( i ) ]  S as A + O  

and it follows that the integration constant B must vanish in the BO limit for (85) to 
be a sohtion of the Benjamin-Ono equation (cf the non-zero Kdv limit (77)). 

Letting the wavelength u+m (i.e. :+a), equations (821, (83) and ( 8 5 )  yield 

i =$x + i,t + & 2c  u ( x ,  t)' uo+- 
I + i Z  

with 

i, = -zuO;-F2 (866) 
which is the algebraic (Lorentzian) solitary wave of the BO equation first derived by 
Benjamin [13]. Equations (85) and (86) now show that the periodic solution of the 
BO equation can be represented by an infinite sum of identical Lorentzian solitary-wave 
profiles; this is yet another example of the nonlinear superposition principle. The result 
for the BO equation seems to have been demonstrated for the first time by Zaitsev [25] 
using a Fourier series approach; it has been reported more recently by Miloh and 
Tulin [24] who used a method based on contour integration. We observe that, yet 
again, the periodic-wave speed E (equation (82)) differs from the speed of the solitary 
wave 

E* =2uo+F 
(given by equation (866) ) ,  except in the solitary-wave limit o + m .  



Periodic solutions of the ILW equation 2025 

The imbricate series (85) can be summed by using the identity 

which can be deduced from the Mittag-Leffler expansion 

Putting x = 1/21 and y = i/21 in (87) results in 

- sinh(l/ i)  21  - 
m 

E 
=-m 1 + (? - 2n&)2 cosh( I/;) -COS( Z/ I) 

Substituting (88) into (85) gives 

( i / 3 )  sinh(l/ i)  
u(x ,  1 )  = ua+ 

cosh( l/1) - COS(;/{) 

which we recognize as the periodic solution of the BO equation found by Benjamin 
[I31 and Ono [14]. 

The Fourier series for the periodic solution (89) can be deduced from that for the 
ILW periodic wave, equation (57); proceeding to the BO limit we obtain 

It is straightforward to sum this last series to recover the right-hand side of (89). 

(83) as 
The periodic solution (89) has its dispersion relation given by equations (82) and 

and then, letting I + O  (i.e. u+O) in (90) and (91), we deduce the small-amplitude 
linear-wave approximation for the BO periodic wave 

with 

i, - -2uai-F2/? 

This, of course, is the infinitesimal Stokes solution for the BO equation which can be 
confirmed by taking the limit A + 0 in (59) and (60) (noting, in particular, that 

By letting A +O, B+O in (12). we see that the bilinear form of the BO equation is 
(n- -y)/s+ I/$ 

[iD, +2iu,Dx - D:]f+ .f- = 0. 

The corresponding bilinear form of the BO periodic solution (89) can then be obtained 
from (42) in the BO limit. However, it is more straightforward to use the expression 
in (89) which, together with the identity 

2 sinh(A-B) 
coth A -coth B = cosh(A - B )  -cosh(A+ B) 
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yields 

u(x ,  t )  = u,+iJ, In (f+/f-) 

where 

f+(x, t )  = 1 -exp[(ii- I)/;] 

f-(x, t )  = 1 -exp[(ii+ l),/;j. 

These results were first reported by Satsuma and Ishimori [361 (for the case u,=O). 

11. Further periodic solutions of the ILW equation 

Joseph and Egri [2] and Chen and Lee [I71 conjectured that a real periodic solution 
of the ILW (6) can be derived by letting p + ip, o + io, etc, in the solitary wave (54)-(55). 
This somewhat ad hoc procedure leads to the solution 

p sinh y 
cos z + cosh y 

u ( x , t ) = u , -  z = px + w t  + a 

o =-(h+2u,)p+p2 coth y (93) 

with a real. 

the ‘correct’ solution as 
However, Ablowitz et al [271 claim that (92) does not, in fact, solve (6) and give 

p si& 
u ( x ,  t )  = U,- 

cos(z+i+)+cosh y (94) 

where + f 0 and z are real, i.e. the phaseshift a + i+ is complex definite. This solution 
is complex-valued. These authors do not actually derive the solution (94), but merely 
state it as a fact and then verify its validity. Moreover, they do not indicate how the 
solution is to be obtained. 

To obtain the ‘corrected (complex) version (94) of the proposed (real) periodic 
solution (92), we shall make use of the solution given by equation (36). Transforming 
a + a + i m  (i.e. z + z + m), and usingthe equivalent expression (30), yields the periodic 
solution of the ILW (6) in the form 

where we have again made use of the quasiperiodicity relation e,(z)  = &(z+fm) 
(see section 6). The dispersion relation for (95) is unaltered and is given by equation 
(31). However, the analyticity condition (37) is transformed to 

(96) 

Alternatively, we can let n + a - ins  (i.e. z - )  z -  m) in (36) which also leads to (95) 
(the solution is periodic in z with period 2im) but the domain of validity is now 

- 2 m +  y <  Im(a)  < - y  0 < y < VS. 

y <  Im(a) < 2 m  - y o< y < Trs. (97) 

We observe that the periodic solution (95) is complex-valued since Im(a) f 0. 
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Substituting (43) into (95) we easily deduce the imbricate series representation 

sinh y 

cos(z - 2inm) + cosh y 

m 
u ( x , t ) = u o - p  c O<y<Trs 

where the corresponding dispersion relation is given by (31) and (48) as 

q2" q =e-=', 
m 

o=-(A+2u,)p+p2cothy-4p2sinhy I: . - ,I 
"Q, 1 --Lq- cosh i y +  q4.q 

Proceeding to the limit q + O  (i.e. s +  a), these last two results give 

p sinh y 
cos z + cosh y 

u ( x , t ) = u , -  z = p x  + of + a 

o = -(A+2u,)p+p2coth y. (986) 

If we rewrite the phaseshift as a +ib (a, 4 real) and let s + m in (96) and (97), then 
we see that the periodic solution (98) has its domain of analyticity defined by 4 < -y 
or 4 > y ( y  > 0). Thus, the periodic solution (98) recovers the complex-valued solution 
(94) given by Albowitz et a1 [27] and is valid in the entire complex plane except in 
the strip (Im(z)lsy, y>O. This solution can never be real-valued and confirms that 

incorrect. 
Even though we have taken p > 0 in (98), the solutions in the two subregions 4 < -y 

and 4 > y are not independent (since the solution is parity invariant and defined on 
-m < x < +CO). We therefore need only consider the solution in the upper domain 
Im(r) = 4 > y. In this case, its Fourier series representation is 

?he (rea!) so!ztion (92) proposed by Joseph and Egr;. [2j End Chen 2nd Lee [I71 Is 

which converges for 4 > y ( y > 0). 
The advantage of our approach is now apparent: by starting with a complex periodic 

solution of the ILW (6) we are able to deduce the complex periodic solution, given by 
Ablowitz et a[; as a particular limiting case. 

That (98) solves the ILW (6) (subject to the analyticity requirement 4 > y )  can 
readily be seen by writing the solution in its bilinear form 

u(x ,  t )  = un+iJ, In[(l+e'z+y)/(l (99) 

If we compare (99) with (111, we see that f (x, t )  = 1 +exp(iz) which, upon substitution 
into (K!), will result in a solution of the ILW bilinear equation if 

-2 e"{[o + p ( A  +2un)] sinh y-p'cosh y}+ B(1+2 eiz cosh y + 2  e2iz) = 0. (100) 

But, using equation (33). one gets B = lim,,n B(y; q )  = 0 and so (100) is satisfied 
provided o is given by (986). which is the desired dispersion relation. 

It is interesting to note that the complex XLW periodic solution (98) has the same 
analytic form as the real BO wave (89) (modulo a phaseshift); however, we emphasize 
their different wavespeeds (cfequations (91) and (986)) and the functionai dependence 
y = p / A  in the case of the ILW solution. 

In the deepwater limit, A-0, the ILW periodic solution (98) reduces to the trivial 
solution un of the BO equation (recall that p = O(A) and y +  T ) ,  whereas the shallow- 
water limit, A + m, yields (in the notation of section 9) 

(101a) 2 ,  -- u ( i z  i) = un-ta2 sec z ( p x +  ;i+ Z)  
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a singular solution of the KdV equation with dispersion relation 

This last solution is valid throughout the complex ::-plane since y +  0 in the analyticity 
condition h ( 6 )  = 4 > y (and its reflection 4 < - y ) .  It is perhaps somewhat ironical 
that, in the K d v  case, we could have obtained the limiting solution (101) directly from 
the classical sech2 solitary wave (76) by using the ad hoc procedure of Joseph; Chen 
and others and simply replace 5 by ii,  etc. 

12. Summary and conclusions 

The ILW equation (6) has been solved for stationary periodic solutions using the bilinear 
transformation method following the procedure reported by Nakamura and Matsuno 
[26]. The resulting solution (30), expressed in terms of theta functions, is complexed- 
valued and has a natural parametrization in the nome q. A new expression for the 
dispersion relation, equation (31), has been obtained. The important class of real 
solutions, which correspond to physical waves, has been identified and found to agree 
with the periodic solutions of the dimensional ILW (3) reported by Miloh [ZO!. In the 
shallow-water limit, the ILW periodic solution reduces to the well known cnoidal wave 
of the K d v  equation and a new expression for its dispersion relation, (75), has been 
deduced. The opposite, deep-water, limit yields the periodic solution ofthe BO equation 
first found by Benjamin. 

The expression (45) shows that the ILW periodic solution can be represented as an 
‘imbricate’ series of equally spaced identical solitary-wave profiles. As the wavelength 
U increases, the overlaps between adjacent profiles are reduced until, in the limit U+ m, 
the periodic solution reduces to the ILW solitary wave (54). In the limit u+O, the 
solution is approximately a small-amplitude sinusoidal wave (the infinitesimal Stokes 
solution (59)). Furthermore, it has been shown that, for intermediate amplitude and 
moderate linearity, the ILW periodic solution can be approximated by a sine wave or 
solitary wave. 

The controversy surrounding the (real) periodic solution proposed by  Joseph and 
Egri [2] and Chen and Lee [I71 and the alternative (complex) periodic solution given 
by Ablowitz et a/ [27] has been examined, and the latter solution has been shown to 
be correct by deriving it as the limit ( q  + 0) of the general complex periodic solution (36). 

Benjamin [I31 showed that the periodic solution, (89), of the BO equation has 
waves which are sharper at the crests than at the troughs. As we might expect, this 
feature is shared by the more general ILW periodic wave (45). For, if U = u m d / 2  
denotes the elevation midway between a crest and trough, then it is straightforward 
to show that 

where (U) is the ambient level of the wave as defined in (61). It follows immediately 
that U is greater than (U). indicating that the waves are narrower at the crests than at 
the troughs, i.e. the waves are peaked upwards. 

The property, whereby the ILW periodic solution can be represented as an infinite 
sum of solitary-wave profiles (equation (45)), is one that is exhibited by a number of 
other nonlinear wave equations, notably the related K d v  and BO equations. However, 
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there has been a tendency in much of the literature to misinterpret this remarkable 
property by saying that the periodic solution is an exact superposition of 'solitons' 
(though, to be fair, this misleading view may well have more to do with a somewhat 
loose usage of the word 'soliton', than a genuine misunderstanding on the part of some 
authors). Nevertheless, the fact remains that the component solitary-wave functions 
are not, in general, solutions of the underlying nonlinear equation. This is because 
each solitary-wave profile in the sum has the same speed as the parent periodic wave 
which is, in general, different from the speed of the solitary wave proper. Thus, there 
is no genuine superposition of solutions in the accepted sense of linear theory, but 
only a superposing of the shapes of solitary waves, the latter acting as a kind of pattem 
or template. 

However, Zaitsev [25] remarks that, for those equations which are Galilean 
invariant, the arbitrary level (uJ may be chosen so that the periodic and solitary-wave 
speeds are equal. He maintains that, for this particular choice of U,,, the imbricate 
series is a genuine superposition of solitary waves. But this assertion is, in fact, incorrect 
because the required value of uo is invariably non-zero (except in very special circum- 
stances: see e.g. the solution (52) when y = + ~ ) .  In this case, we do have a linear 
superposition of solutions since the non-zero constant uo is, in general, a trivial solution 
of the nonlinear wave equation, but it is not, of course, a solitary wave! 

l'here is a divergence of opinion as to what kind of superposition principie and 
dynamical interaction is at work here. Miloh [20], for example, talks about a 'linear 
superposition of solitons' (his emphasis), whereas Whitham [23] states that 'the 
representation . . . may be viewed as another instance of the "clean interaction" of 
solitons, in that they are superposed but retain their identity and do not destroy each 
other under nonlinear coupling'. Toda [21], on the other hand, remarks that 'these 
soiiions are muiuaiiy inieracting, noi independeni of each other, and hence iheir speed 
is not given by the formula . , . for a soliton, but is given by the dispersion relation . . . 
of the [periodic] wave'. 

It is evident that, in all the cases mentioned here, a very special nonlinear superposi- 
tion principle is involved. Certainly, the solitary-wave profiles which generate the 
periodic wave are added linearly; but no linear superposition principle in the accepted 

can it be said, as Toda maintains, that the waveforms are 'mutually interacting'; after 
all, in the stationary coordinate frame, the solitary-wave shapes just sit there and so 
there is clearly no dynamical interaction whatsoever. Whitham's suggestion, supported 
by Miloh [20] and Miloh and Tulin [24], that the superposition property is somehow 
related to the 'clean interaction' property of colliding solitons, is unsatisfactory if only 
fer the si--p!e :casen that the imbricated wzve profi!es retzis their iden!i!y Fe: a!! !i-e 
which is certainly not the case for multisoliton interactions in which the individual 
'solitons' regain their solitary-wave identities only after an infinite time! 

Rather, it would seem more plausible to regard this nonlinear superposition prin- 
ciple as merely a representational one, whereby the component solitary-wave profiles 
in the imbricate series are simply added together with no implied dynamical interaction. 
!! wou!d appear that the non!lnear character resides solely in the difference between 
the periodic-wave speed and that of the would-be constituent solitary waves. 

The nonlinear superposition principle, as outlined here for spatially periodic sol- 
utions (in one spatial dimension), has been shown to have wide application in the 
theory of nonlinear wave equations [20-25,341. However, the extent to which the 
principle is valid remains an open question. Certainly, it would appear that those 
equations which possess hyperbolic or rational solitary waves also have spatially 

- 
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periodic solutions which can be represented by imbricate series: to date, no exceptions 
are known. These periodic solutions can all be expressed in terms of elliptic functions. 
However, Boyd 1371 has shown (numerically) that the hypercnoidalt waves of the 
quartic KdV equation [39] cannot be represented by an exact superposition of solitary- 
wave profiles (although the imbricate series is a very good approximation to the 
hypercnoidal wave even when there is large overlapping of the constituent wave 
profiles). Thus, it would appear from this counterexample that the superposition 
principle is not generally valid for non-elliptic periodic waves. Moreover, an equation 
does not have to be ‘integrable’ (i.e. solvable by the inverse scattering transform) for 
the superposition principle to apply. For example, the so-called regularized longwave 
(or Benjamin-Bona-Mahony) equation is not integrable [40], but its stationary periodic 
solutions are elliptic functions which can themselves be expressed as imbricate series 
P41. 

The nonlinear superposition principle has been used to good effect by Zaitsev [25], 
Whitham [23], Miloh and Tulin [24] and Miloh [20] for finding periodic solutions of 
various nonlinear wave equations. These authors assume a stationary periodic solution 
in the form of an imbricate series of solitary-wave profiles and, by direct substitution, 
show that it solves the equation in question. It is evident that this direct approach has 
serious limitations. For instance, it is preferable that periodic stationary-wave solutions 
are known to exist a priori (though it is not strictly necessary). Also, the analytic form 
of the solitary wave must be known before the imbricate series can be constructed. 
Even so, after substituting the series into the equation, one may be left with an 
intractable identity to verify. To take but one example, Whitham [23], when applying 
the method to the Kdv equation, is left to demonstrate that 

[ sechz([-2no)] - 1 sech4([-2nu)=B-A sech2([-Znu) 

an astonishing result by any standard. That he was able to prove this identity (for 
suitable A and B) by elementary arguments is perhaps even more remarkable! A final 
disadvantage of this direct approach is that the imbricate series solution is usually 
taken to be real and may be a special case of a more general complex-valued periodic 
solution. The latter solution, as has been shown here for the ILW equation (section 
l l ) ,  may lead to other important (possibly periodic) solutions which would otherwise 
be ‘lost’. 

The advantage of the solution procedure adopted in the present article is that it 
yields complex-valued periodic solutions in terms of theta functions. It may then be 
possible to deduce the nonlinear superposition principle from the resulting solution 
using available theta identities. However, this approach suffers from the obvious 
disadvantage that it is restricted to those equations which can be solved via theta 
functions. To date, only those solutions which are expressible in terms of the I D  

Riemann theta functions have been shown to accommodate the superposition principle. 
It is well known that the Kdv, Boussinesq, Kadomtsev-Petviashvili, ILW and many 
other evolution equations admit solutions which can be expressed in terms of the 
multidimensional theta functions [see e.g. 26, 35, 41,421. These solutions have N(>1) 
phase variables and can be thought of as the spatially periodic generalizations of the 
familiar N-soliton solutions (in the same way that a one-periodic wave ( N  = 1) is a 
generalization of the solitary wave via the nonlinear superposition principle). They 

t These arc periodic solutions which can be expressed in terms of hyperelliptic functions, i.e. functions 
which are the inverse of hyperelliptic integrals [38]. 

2 m  m 

n=-m “=-a n=-m 
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have been variously referred to as ‘finite band‘ or ‘finite gap’ solutions, “-periodic 
waves’, ‘N-cnoidal’ or simply ‘polycnoidal’ waves (see the review article by Boyd 
[431). The problem of whether the nonlinear superposition principle can be extended 
to polycnoidal waves remains an open one. The bicnoidal wave (,V=2) of the Kdv 
equation has been discussed at length by  Boyd [44-461 who has shown that it can be 
approximated by the sum of two sech’ solitary waves in the limit of large amplitudes 
(and when the wave crests are well separated compared with their widths). This, at 
least, suggests that the superposition principle may be valid for polycnoidal waves: 
however, balanced against this is the fact that these polycnoidal waves are hyperelliptic 
functions and, as noted above, the superposition principle faits for the hyperelliptic 
solutions of the quartic Kdv. 

This summary would not be complete without mention of a third procedure for 
obtaining imbricate series representations of periodic solutions. The method, first 
reported by Boyd [33] in connection with the Kdv cnoidal wave, and subsequently 
developed in a series of articles by the same author [34,44-461, uses the Poisson 
summation formula whereby a periodic function u ( x ) ,  with period 2L, can be represen- 
ted by an ‘imbricate’ series [32] 

m 

u(x )=u ,+  1 S ( x - 2 n L )  uo = constant. (102) 
n=-m 

The repeated ‘pattern’ function S(x) must satisfy suitable decay conditions as 1x1 - m 
to ensure that the series converges. If S(x) has the shape of a solitary wave, then we 
immediately recognize in (102) the nonlinear superposition principle. The method 
suffers from the disadvantage that the Fourier series of the periodic solution must be 
known before the series (102) can be determined. Furthermore, for those equations 
which are solvable via ( ID)  theta functions, there seems to be little advantage in using 
Boyd’s technique. This is because the imbricate theta series, which are obtained by 
Poisson summation of the theta-Fourier series, can be deduced by simply applying 
Jacobi’s modular transformation to the theta functions. Of course, the Poisson summa- 
tion method may well be helpful for deriving imbricate series for those periodic 
stationary waves which cannot be expressed in terms of theta functions. 

Finally, there is evidence to suggest that it may be possible to extend the superposi- 
tion principle, albeit in a slightly modified form, to nonlinear wave equations which 
do not admit soliton-type solutions. For example, Parker [47] has shown that the 
periodic ‘sawtooth solution to the Burgers equation can be expressed as a superposition 
of identical, equally spaced Taylor [48] shock profiles. The Burgers equation is dissipa- 
tive, and although the equation admits stationary waves with the Taylor shock profile 
these do not possess the ‘clean interaction’ property associated with soliton solutions. 
The nonlinear superposition principle as applied to the Burgers equation has been 
discussed at length in Parker [49]. It is interesting to speculate on which other nonlinear 
wave equations can be encompassed by the nonlinear superposition principle. 
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